Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B. Tech II Year I Semester Regular \& Supplementary Examinations March-2023 SWITCHING THEORY AND LOGIC DESIGN

(Electronics and Communication Engineering)
Time: 3 hours

> (Answer all Five Units $5 \times 12=60$ Marks)
> UNIT-I

1 a Define Boolean Algebra and list the postulates used in it.
b State and prove any four Boolean theorems of Boolean a
OR
2 a Simplify the given Boolean function, F to minimum numb
Boolean algebra $\mathrm{F}=\mathrm{XY}$ ' $\mathrm{Z}+\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}+\mathrm{W}^{\prime} \mathrm{XY}+\mathrm{WX}$ 'Y +
b Draw the logic diagram for the simplified expression
logic.
3 a Simplify the Boolean function using Five Variable K-Map. $\mathrm{F}=\sum \mathrm{m}(0,1,2,4,7,8,12,14,15,16,17,18,20,24,28,30,31)$
b Apply the K-Map technique to simplify the given Boolean expression in POS form using K-Map $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,2,4,5,9,12,13,14)$ OR
4 Simplify the following Boolean function using Tabulation method, and realizeits logic circuit with NAND gates and NOR gates.
$\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,5,8,9,11,15)$

UNIT-III

5 a Explain the procedure of designing a combinational logic circuit with an example.
b Design a Full Subtractor using truth table.

OR

6 a Define Multiplexer. Construct 4:1 multiplexer with logic gates and truth table.
b Represent the following Boolean function with an 8:1 multiplexer.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{BD}^{\prime}+\mathrm{ACD}+\mathrm{B}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$.

UNIT-IV

7 a Define Latch and list different types of Latches.
b Define Flip-Flop. What are the different types of Flip-Flops?
c Explain the working principle of RS Flip-Flop with the help of logic diagram and give its Characteristic Table and Graphic symbol.

OR

8 What is a synchronous counter? Design a 3-bit synchronous up/down counter.

UNIT-V

9 Explain the following related to sequential circuits with suitable examples:
i) State diagram
ii) State table
iii) State assignment

OR

10 Illustrate the PAL for the following Boolean functions.
(i) $\mathrm{A}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,2,6,7,8,9,12,13)$
(ii) $B(w, x, y, z))=\sum m(0,2,6,7,8,9,12,13,14)$

Max. Marks: 60

CO1 L1 6M
CO1 L3 6M

CO1 L4 6M
CO2 L1 6M

CO2 L4 6M
CO2 L4 6M
$\mathrm{CO} 2 \mathrm{~L} 4 \quad 12 \mathrm{M}$

CO1 L2 6M
CO5 L3 6M
CO4 L3 6M
CO4 L2 6M

CO1 L1 4M
CO1 L1 4M
CO3 L2 4M

CO6 L4 12M

CO1 L2 12M

CO5 L3 12M

Hzul/ xam

$$
288
$$

