	Q.P. Code: 20EC0403	F	R20		
	Reg. No:				
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: 1	PUTTU	R		
	(AUTONOMOUS)				
	B.Tech II Year I Semester Regular & Supplementary Examinations Ma	rch-202	3		
	(Electronics and Communication Engineering)				
	Time: 3 hours	Max. M	arks 6	50	
	(Answer all Five Units $5 \times 12 = 60$ Marks)		uno. (
1	a Define Boolean Algebra and list the postulates used in it.	CO1	L1	6M	
	b State and prove any four Boolean theorems of Boolean algebra.	CO1	L3	6M	
	OR				
2	a Simplify the given Boolean function, F to minimum number of literals using Boolean algebra F=XY'Z + X'Y'Z +W'XY + WX'Y + WXY.	CO1	L4	6M	
	b Draw the logic diagram for the simplified expression of the above using AOI logic.	CO2	L1	6M	
2	UNIT-II	000			
3	$F = \sum m(0, 1, 2, 4, 7, 8, 12, 14, 15, 16, 17, 18, 20, 24, 28, 30, 31)$	CO2	L4	6M	
	b Apply the K-Map technique to simplify the given Boolean expression in POS form using K-Map $F(A,B,C,D) = \Sigma(1,2,4,5,9,12,13,14)$	CO2	L4	6M	
4	Simplify the following Boolean function using Tabulation method, and realizeits logic circuit with NAND gates and NOR gates. $Y(A, B,C,D) = \Sigma(1,3,5,8,9,11,15)$	CO2	L4	12M	
	UNIT-III				
5	a Explain the procedure of designing a combinational logic circuit with an example.	CO1	L2	6M	
	b Design a Full Subtractor using truth table.OR	C05	L3	6M	
6	a Define Multiplexer. Construct 4:1 multiplexer with logic gates and truth table.	CO4	L3	6M	
	b Represent the following Boolean function with an 8:1 multiplexer. F(A,B,C,D) = A'BD'+ACD+B'CD+A'C'D.	CO4	L2	6M	
7	a Define Latch and list different types of Latches	COI	11	13.4	
'	b Define Flip-Flop What are the different types of Flip-Flops?	COI		41 VI 41 M	
	c Explain the working principle of RS Flip-Flop with the help of logic	CO1 CO3	L1 L2	4WI 4M	
	diagram and give its Characteristic Table and Graphic symbol.	005			
	OR				
8	What is a synchronous counter? Design a 3-bit synchronous up/down counter.	CO6	L4	12M	
9	Explain the following related to sequential circuits with suitable examples:	CO1	L2	12M	
	1) State diagram 11) State table 111) State assignment				
10	Illustrate the PAL for the following Boolean functions	C05	13	12M	
	(i) $A(w,x,y,z) = \Sigma m(0,2,6,7,8,9,12,13)$ (ii) $B(w,x,y,z) = \Sigma m(0,2,6,7,8,9,12,13,14)$	005	13	14171	

*** END ***

		(Answer all five Units 5 x 12 = 60 Marks)	
		2.3° and a subset of the set of the	
		b State and prove any flow flowigan theorems of Boolean algebra.	
1/10			
2/3			